Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Within a landscape where prey has an aggregated distribution, predators can take advantage of the spatial autocorrelation of prey density and intensify their search effort in areas of high prey density by using area-restricted search behaviour. In African arid and semi-arid savannas, large herbivores tend to aggregate around scarce water sources. We tested the hypothesis that water sources are a key determinant of habitat selection and movement patterns of large free-ranging predators in such savannas, using the example of the African lion. We used data from 19 GPS radio-collared lions in Hwange National Park, Zimbabwe. Maps of lions' trajectories showed that waterholes are key loci on the lions' route-maps. Compositional analyses revealed that lions significantly selected for areas located within 2 km of a waterhole. In addition, analysis of lions' night paths showed that when lions are close to a waterhole (<2 km), they move at lower speed, cover shorter distances per night (both path length and net displacement) and follow a more tortuous path (higher turning angle, lower straightness index and higher fractal dimension) than when they are further from a waterhole. Hence, our results strongly suggest that lions adopt area-restricted searching in the vicinity of waterholes, and reduce their search effort to minimize the time spent far from a waterhole. They provide an illustration of how key habitat features that determine the dispersion of prey (e.g. waterholes in this study) have an influence on the spatial ecology and movement patterns of terrestrial predators. © 2009 Springer Science+Business Media B.V.

Original publication




Journal article


Landscape Ecology

Publication Date





337 - 351