Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Positive relationships between species diversity and productivity have been reported for a number of ecosystems. Theoretical and experimental studies have attempted to determine the mechanisms that generate this pattern over short timescales, but little attention has been given to the problem of understanding how diversity and productivity are linked over evolutionary timescales. Here, we investigate the role of dispersal in determining both diversity and productivity over evolutionary timescales, using experimental metacommunities of the bacterium Pseudomonas fluorescens assembled by divergent natural selection. We show that both regional diversity and productivity peak at an intermediate dispersal rate. Moreover, we demonstrate that these two patterns are linked: selection at intermediate rates of dispersal leads to high niche differentiation between genotypes, allowing greater coverage of the heterogeneous environment and a higher regional productivity. We argue that processes that operate over both ecological and evolutionary timescales should be jointly considered when attempting to understand the emergence of ecosystem-level properties such as diversity-function relationships.

Original publication

DOI

10.1038/nature06554

Type

Journal article

Journal

Nature

Publication Date

13/03/2008

Volume

452

Pages

210 - 214

Keywords

Biodiversity, Biological Evolution, Ecosystem, Genotype, Models, Biological, Phenotype, Pseudomonas fluorescens, Selection, Genetic