Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ecologists frequently collect data on the patterns of association between adjacent trophic levels in the form of binary or quantitative food webs. Here, we develop statistical methods to estimate the roles of consumer and resource phylogenies in explaining patterns of consumer-resource association. We use these methods to ask whether closely related consumer species are more likely to attack the same resource species and whether closely related resource species are more likely to be attacked by the same consumer species. We then show how to use estimates of phylogenetic signals to predict novel consumer-resource associations solely from the phylogenetic position of species for which no other (or only partial) data are available. Finally, we show how to combine phylogenetic information with information about species' ecological characteristics and life-history traits to estimate the effects of species traits on consumer-resource associations while accounting for phylogenies. We illustrate these techniques using a food web comprising species of parasitoids, leaf-mining moths, and their host plants.

Original publication




Journal article


Am Nat

Publication Date





E1 - 14


Animals, Feeding Behavior, Food Chain, Host-Parasite Interactions, Models, Biological, Models, Statistical, Moths, Phylogeny, Plant Physiological Phenomena, Plants, Wasps