Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Birds are adapted to a wide range of flight conditions, from steady fixed-wing glides to high angle of attack manoeuvres involving unsteady separated flows. They naturally control and exploit the transitional Reynolds number regime of Re ≈ 105 that is currently of interest in unmanned air vehicle technologies. This article presents a reconstruction of the inner portion of a wing of an eagle in free flight, during a rapid pitch-up manoeuvre at the end of a shallow glide to an elevated perch. Photogrammetric techniques were used to map the identified points on the wing and these were used to fit a mathematical model of the upper and lower surface topography using polynomial regression techniques. The surface model accounts for spanwise twist, spanwise bending, and varying chord distribution, as well as for the shape of the aerofoil. The aerodynamics of the two-dimensional aerofoil sections were analysed using XFOIL and were compared against two technical aerofoils, namely the Selig S1223 and Clark Y aerofoils, at 1×10 5≤2×105. The bird aerofoil maintains a robust, near-constant drag coefficient over a wide lift coefficient range.

Original publication

DOI

10.1243/09544100JAERO737

Type

Journal article

Journal

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering

Publication Date

01/01/2010

Volume

224

Pages

855 - 864