Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a natural community of 49 species (12 species of aphids and 37 species of their parasitoids), body lengths of 2,151 parasitoid individuals were, to an excellent approximation, related to the body lengths of their individual aphid hosts by a power law with an exponent close to 3/4. Two alternative models predict this exponent. One is based on surface area to volume relationships. The other is based on recent developments in metabolic ecology. Both models require a changing ratio (in both host and parasitoid) of length to diameter with increasing body length. These changing ratios are manifested differently in the two models and result in testably different predictions for the scaling of body form with increasing size. The estimated exponent of 3/4 for the relationship between individual host body size and individual parasitoid body size degrades to an exponent of nearly 1/2, and the scatter in the relationship between aphid and parasitoid body length is substantially increased, if the average length of a parasitoid species is examined as a function of the average length of its aphid host species instead of using measurements of individuals.

Original publication

DOI

10.1073/pnas.0408780102

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

18/01/2005

Volume

102

Pages

684 - 689

Keywords

Animals, Aphids, Body Size, Feeding Behavior, Host-Parasite Interactions, Models, Biological