Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In several species of short-lived Australian agamid lizards, an individual's sex is determined by the nest temperatures encountered during incubation. The adaptive significance of such systems remains unclear. Here, we explore the hypothesis that (1) the optimal timing of hatching differs between the sexes, and thus (2) temperature-dependent sex determination (TSD) enhances maternal and offspring fitness by generating seasonal shifts in offspring sex ratios. Our model predicts that TSD can indeed enhance maternal fitness returns in short-lived lizards if (1) male-male competition is intense, thus reducing mating success of newly-matured males (but not females), and (2) the nesting season is prolonged, such that seasonal effects become significant. Available data on the distribution of TSD in Australian agamid lizards broadly support these predictions. Because both the level of male-male competition and the length of nesting season can vary at small spatial and temporal scales, selective forces on sex-determining mechanisms also should vary. Hence, our model predicts extensive small-scale (intraspecific) variation in sex-determining systems within agamid lizards, as well as among species. © 2007 Springer Science+Business Media B.V.

Original publication

DOI

10.1007/s10682-007-9222-4

Type

Journal article

Journal

Evolutionary Ecology

Publication Date

01/03/2009

Volume

23

Pages

281 - 294