Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. Ecologists have identified two types of processes promoting species coexistence: stabilizing mechanisms (niche differentiation and related processes) that increase negative intraspecific interactions relative to negative interspecific interactions, and equalizing mechanisms (neutrality) that minimize the differences in species' demographic parameters. It has been theoretically and empirically shown that the two types of mechanisms can operate simultaneously; however, their relative importance remains unstudied although this is a key question in the synthesis of niche and neutral theories. 2. We experimentally quantified the relative importance of niche and neutral mechanisms in promoting phenotypic diversity in a model microbial system involving different phenotypes of the bacterium Pseudomonas fluorescens. Initially isogenic populations of the bacterium can diversify into a series of major and minor classes of phenotypes that can be treated as analogues of species. We estimated the relative population growth rate when rare of 32 phenotypes from six replicate microcosms. Each phenotype was assessed in a re-assembled microcosm in which the relative densities of all phenotypes remained the same except for the focal one which was reduced in frequency. A growth rate advantage when rare was considered evidence of non-neutral processes. 3. Approximately one-third of the phenotypes had a growth rate advantage when rare while the remaining two-thirds showed neutral or near-neutral dynamics. Furthermore, there was overall little evidence that productivity increased with phenotypic diversity. 4. Our results suggest that niche and neutral processes may simultaneously contribute to the maintenance of biodiversity, with the latter playing a more important role in our system, and that the operation of niche mechanisms does not necessarily lead to a positive biodiversity effect on ecosystem properties. © 2009 British Ecological Society.

Original publication

DOI

10.1111/j.1365-2435.2009.01579.x

Type

Journal article

Journal

Functional Ecology

Publication Date

01/12/2009

Volume

23

Pages

1139 - 1147