Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the absence of much passive stability, flying insects rely upon active stabilisation, necessitating the provision of rich sensory feedback across a range of modalities. Here we consider from a sensory perspective what quantities flying insects measure, in order to ask from a mechanical perspective why they should want to do so. We consider each of the sensory modalities separately and uncover three general principles. Firstly, we find that insects have evolved to measure changes in kinematic state, rather than absolute state. For example, although the antennae may be loosely thought of as airspeed sensors, we show that they are configured as a sophisticated adaptive sensing system which is much more appropriate for measuring changes in airspeed than absolute airspeed. Secondly, we find that insect sensory systems are tuned to sense self-motion components in specific directions. For example, certain visual interneurons of flies operate as matched filters that are tuned to detect the optic flow fields induced specifically by rotation about one particular axis. Thirdly, we find that insects commonly combine sensory input from across modalities to form composite, multi-modal quantities which they use as feedback to the control system. For example, certain individually identified descending interneurons combine input from the compound eyes, ocelli, antennae, and cephalic wind-sensitive hairs into one composite signal which is then used in flight control. We infer from these three general organisational principles that insects are configured to sense excitation of their natural modes of motion. This natural-mode sensing hypothesis: (1) explains why insects should want to sense changes in state rather than absolute state; (2) predicts what specific directions of motion they should sense, and (3) specifies how sensory input from different modalities should be combined. © 2008 Elsevier Ltd. All rights reserved.

Original publication

DOI

10.1016/S0065-2806(07)34005-8

Type

Journal article

Journal

Advances in Insect Physiology

Publication Date

31/12/2007

Volume

34

Pages

231 - 316