Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is increasing theoretical and empirical evidence that genetic compatibility among partners is an important determinant of fertilization success and offspring viability. In amphibians, females often actively choose partners from among a variety of males and polyandry is common. Genetic compatibility among partners may therefore be an important determinant of fertilization success and offspring viability in some amphibians. Amphibians also show some of the highest levels of genetic differentiation among neighbouring populations known in vertebrates, and as such, populations may have evolved different co-adapted gene complexes. This means that offspring from among-population crosses may have reduced fitness. It is therefore essential to understand to what extent crossings between and within populations may interfere with successful fertilization and offspring viability. Here, we test whether crossing individuals within and between two different populations of the Australian Peron's tree frog (Litoria peronii) using artificial fertilizations affect fertilization success and offspring viability. Fertilization success per se is strongly influenced by male identity, which is likely to depend at least to some extent on the experimental procedure (e.g. resulting in variation in sperm number per ejaculate), whereas there was no fertilization effect of female identity. More importantly, male and female identity, independently of each other, explained significant variation in offspring viability, whereas no such effect could be linked to population of origin. Thus, our experiments suggest that crossing populations may not always be the most significant factor affecting fertilization success or offspring viability, but may be more influenced by the genetic quality or the genetic compatibility of partners. © 2008 The Authors.

Original publication

DOI

10.1111/j.1442-9993.2007.01823.x

Type

Journal article

Journal

Austral Ecology

Publication Date

01/05/2008

Volume

33

Pages

348 - 352