Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A recent model shows that altruism can evolve with limited migration and variable group sizes, and the authors claim that kin selection cannot provide a sufficient explanation of their results. It is demonstrated, using a recent reformulation of Hamilton's original arguments, that the model falls squarely within the scope of inclusive fitness theory, which furthermore shows how to calculate inclusive fitness and the relevant relatedness. A distinction is drawn between inclusive fitness, which is a method of analysing social behaviour; and kin selection, a process that operates through genetic similarity brought about by common ancestry, but not by assortation by genotype or by direct assessment of genetic similarity. The recent model is analysed, and it turns out that kin selection provides a sufficient explanation to considerable quantitative accuracy, contrary to the authors' claims. A parallel analysis is possible and would be illuminating for all models of social behaviour in which individuals' effects on each other's offspring numbers combine additively.

Original publication




Journal article


Proc Biol Sci

Publication Date





713 - 719


Altruism, Biological Evolution, Computer Simulation, Genetics, Population, Models, Theoretical, Population Density, Population Dynamics, Selection, Genetic