Female resistance to male harm evolves in response to manipulation of sexual conflict.
Wigby S., Chapman T.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.