Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Climate change is already impacting species around the world. Although most focus has been on the effect of temperature, changes in climatic variables other than temperature are also expected to drive biological change. Current models suggest that ectotherms, such as reptiles, will be strongly affected by climate change; however, data from natural populations are rare. Here, we use extensive data from 2 populations of a viviparous lizard (Niveoscincus ocellatus Gray, 1845) at the climatic extreme of the species distribution. We examine the effects of climate at a local, a regional and a global scale (thus, integrating a suite of variables at different spatial and temporal scales) on 2 key life history traits: offspring date of birth and size at birth. Overall, our results show that across 9 years of study, local temperature had strong effects on the offspring date of birth but not on the size at birth. Therefore, a rapid increase in local temperature throughout the species range (as predicted under global warming scenarios) is likely to affect phenological processes with potential concomitant effects on offspring fitness and survival.

Original publication

DOI

10.1111/j.1749-4877.2010.00201.x

Type

Journal article

Journal

Integr Zool

Publication Date

06/2010

Volume

5

Pages

164 - 175

Keywords

Animals, Animals, Newborn, Body Size, Climate, Climate Change, Ecotype, Lizards, Models, Biological, Principal Component Analysis, Tasmania, Temperature, Time Factors