Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present an intuitive visual framework, the generalized skyline plot, to explore the demographic history of sampled DNA sequences. This approach is based on a genealogy inferred from the sequences and provides a nonparametric estimate of effective population size through time. In contrast to previous related procedures, the generalized skyline plot is more applicable to cases where the underlying tree is not fully resolved and the data is not highly variable. This is achieved by the grouping of adjacent coalescent intervals. We employ a small-sample Akaike information criterion to objectively choose the optimal grouping strategy. We investigate the performance of our approach using simulation and subsequently apply it to HIV-1 sequences from central Africa and mtDNA sequences from red pandas.

Original publication




Journal article


Mol Biol Evol

Publication Date





2298 - 2305


Africa, Animals, Base Sequence, China, DNA, DNA, Mitochondrial, Data Interpretation, Statistical, Genetics, Population, HIV-1, Humans, Models, Genetic, Phylogeny, Ursidae