Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Whilst rheology is the reference technique to study the mechanical properties of unspun silk, we know little of the structure and the dynamics that generate them. By coupling infrared spectroscopy and shearing forces to study silk fibroin conversion, we are introducing a novel tool to address this gap in our knowledge. Here the silk conversion process has been studied dynamically using polarized attenuated total reflectance Fourier transform infrared spectroscopy whilst applying shear, thus revealing silk protein conformation and molecular orientation in situ. Our results show that the silk conversion process starts with a pre-alignment of the proteins followed by a rapid growth of the β-sheet formation and then a subsequent deceleration of the growth. We propose that this tool will provide further insight into not only silk but any biopolymer solution, opening a new window into biological materials.

Original publication




Journal article


Phys Chem Chem Phys

Publication Date





3979 - 3984


Biopolymers, Fibroins, Protein Structure, Secondary, Spectroscopy, Fourier Transform Infrared