Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Past experience provides a rich source of predictive information about the world that could be used to guide and optimize ongoing perception. However, the neural mechanisms that integrate information coded in long-term memory (LTM) with ongoing perceptual processing remain unknown. Here, we explore how the contents of LTM optimize perception by modulating anticipatory brain states. By using a paradigm that integrates LTM and attentional orienting, we first demonstrate that the contents of LTM sharpen perceptual sensitivity for targets presented at memory-predicted spatial locations. Next, we examine oscillations in EEG to show that memory-guided attention is associated with spatially specific desynchronization of alpha-band activity over visual cortex. Additionally, we use functional MRI to confirm that target-predictive spatial information stored in LTM triggers spatiotopic modulation of preparatory activity in extrastriate visual cortex. Finally, functional MRI results also implicate an integrated cortical network, including the hippocampus and a dorsal frontoparietal circuit, as a likely candidate for organizing preparatory states in visual cortex according to the contents of LTM.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





E360 - E367


Adult, Attention, Brain, Cortical Synchronization, Electrodes, Female, Humans, Magnetic Resonance Imaging, Male, Memory, Long-Term, Nerve Net, Orientation, Oxygen, Visual Perception