Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mutants of the Micromonospora viridifaciens sialidase, Y370E and Y370F, are catalytically active retaining enzymes that operate by different mechanisms. Previous substitutions with smaller amino acids, including Y370D, yielded inverting sialidases. At least one water molecule can fit into the active-site cavity of this mutant and act as a nucleophile from the face opposite the leaving group (Biochemistry 2003, 42, 12 682). Thus, addition of a CH(2) unit (Asp versus Glu) changes the mechanism from inversion back to retention of configuration. Based on Brønsted beta(lg) values, it is proposed that the Y370E mutant reacts by a double-displacement mechanism (beta(lg) on k(cat)/K(m) -0.36+/-0.04) with Glu370 acting as the nucleophile. However, the Y370F mutant (beta(lg) on k(cat)/K(m) -0.79+/-0.12) reacts via a dissociative transition state. The crystal structure of the Y370F mutant complexed with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid shows no significant active-site perturbation relative to the wild-type enzyme.

Original publication

DOI

10.1002/cbic.200500114

Type

Journal article

Journal

Chembiochem

Publication Date

11/2005

Volume

6

Pages

1999 - 2004

Keywords

Amino Acid Substitution, Binding Sites, Crystallography, X-Ray, Kinetics, Micromonospora, Molecular Structure, Mutagenesis, Neuraminidase, Protein Conformation, Water