Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human leukotriene C(4) synthase (LTC(4)S) forms highly ordered two-dimensional (2D) crystals under specific reconstitution conditions. It was found that control of a larger number of parameters than is usually observed for 2D crystallization of membrane proteins was necessary to induce crystal formation of LTC(4)S. Here, we describe the parameters that were optimized to yield large and well-ordered 2D crystals of LTC(4)S. Careful fractioning of eluates during the protein purification was essential for obtaining crystals. While the lipid-to-protein ratio was critical in obtaining order, four parameters were decisive in inducing growth of crystals that were up to several microns in size. To obtain a favorable diameter, salt, temperature, glycerol, and initial detergent concentration had to be controlled with great care. Interestingly, several crystal forms could be grown, namely the plane group symmetries of p2, p3, p312, and two different unit cell sizes of plane group symmetry p321.

Original publication

DOI

10.1016/j.jsb.2009.11.002

Type

Journal article

Journal

J Struct Biol

Publication Date

03/2010

Volume

169

Pages

450 - 454

Keywords

Cryoelectron Microscopy, Crystallization, Detergents, Glutathione Transferase, Glycerol, Humans, Salts, Temperature