Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Avian malaria parasites (Plasmodium) occur commonly in wild birds and are an increasingly popular model system for understanding host-parasite co-evolution. However, whether these parasites have fitness consequences for hosts in endemic areas is much debated, particularly since wild-caught individuals almost always harbour chronic infections of very low parasite density. We used the anti-malarial drug Malarone to test experimentally for fitness effects of chronic malaria infection in a wild population of breeding blue tits (Cyanistes caeruleus). Medication caused a pronounced reduction in Plasmodium infection intensity, usually resulting in complete clearance of these parasites from the blood, as revealed by quantitative PCR. Positive effects of medication on malaria-infected birds were found at multiple stages during breeding, with medicated females showing higher hatching success, provisioning rates and fledging success compared to controls. Most strikingly, we found that treatment of maternal malaria infections strongly altered within-family differences, with reduced inequality in hatching probability and fledging mass within broods reared by medicated females. These within-brood effects appear to explain higher fledging success among medicated females and are consistent with a model of parental optimism in which smaller (marginal) offspring can be successfully raised to independence if additional resources become available during the breeding attempt. Overall, these results demonstrate that chronic avian malaria infections, far from being benign, can have significant effects on host fitness and may thus constitute an important selection pressure in wild bird populations.

Original publication

DOI

10.1111/j.1420-9101.2009.01920.x

Type

Journal article

Journal

J Evol Biol

Publication Date

03/2010

Volume

23

Pages

557 - 569

Keywords

Animals, Animals, Newborn, Antimalarials, Atovaquone, Clutch Size, Drug Combinations, Female, Genetic Fitness, Host-Parasite Interactions, Malaria, Avian, Maternal Behavior, Proguanil, Reproduction, Songbirds