Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Borrelia burgdorferi exploits multiple strategies to evade host immune responses. One central immune escape mechanism is the inactivation of the host complement attack by acquisition host complement regulators FHL-1 and factor H via complement regulator-acquiring surface proteins (BbCRASPs). The BbCRASP-1 protein is the first bacterial factor H/FHL-1-binding protein for which the atomic structure has been solved. Previously, 3 regions including the C terminus were identified as putative contact sites for the two complement regulators by the pepspot analysis. Based on the crystallographic structure an in vitro mutagenesis approach was conducted to identify amino acid residues which are relevant for FHL-1 and factor H binding by exchanging single or multiple residues in region 1 and the C-terminally located region 3. Single changes at 4 positions in region 1 either reduced (Lys136, Lys141, Glu147) or completely eliminated (Leu146) binding of both complement regulators. Substitutions clustered within the C-terminal region decreased (Glu234, Lys238, Tyr239, Lys241, Asp244, Thr245) or abolished binding (Lys240, Asp242, Leu246) of both complement regulators. Mapping the mutations onto the atomic structure of BbCRASP-1 reveals that, in contrast to earlier assumption, the C-terminal mutations act indirectly on FHL-1 and factor H binding, whilst the region 1 mutations map the site of direct complement regulator interaction. The elucidation of BbCRASP-1 structure - function may allow development of novel therapeutic strategies against Lyme disease.

Original publication

DOI

10.1016/j.ijmm.2008.09.002

Type

Journal article

Journal

Int J Med Microbiol

Publication Date

04/2009

Volume

299

Pages

255 - 268

Keywords

Amino Acid Substitution, Bacterial Proteins, Borrelia burgdorferi, Complement C3b Inactivator Proteins, Complement Factor H, DNA Mutational Analysis, Membrane Proteins, Models, Molecular, Mutagenesis, Site-Directed, Protein Binding, Protein Interaction Mapping, Protein Structure, Tertiary