Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NT (neurotensin) is an endogenous tridecapeptide neurotransmitter found in the central nervous system and gastrointestinal tract. One receptor for NT, NTS1, belongs to the GPCR (G-protein-coupled receptor) superfamily, has seven putative transmembrane domains, and is being studied by a range of single-molecule, functional and structural approaches. To enable biophysical characterization, sufficient quantities of the receptor need to be expressed and purified in an active form. To this end, rat NTS1 has been expressed in Escherichia coli in an active ligand-binding form at the cell membrane and purified in sufficient amounts for structural biology studies either with or without fluorescent protein [YFP (yellow fluorescent protein) and CFP (cyan fluorescent protein)] fusions. Ligand binding has been demonstrated in a novel SPR (surface plasmon resonance) approach, as well as by conventional radioligand binding measurements. These improvements in production of NTS1 now open up the possibility of direct structural studies, such as solid-state NMR to interrogate the NT-binding site, EM (electron microscopy), and X-ray crystallography and NMR.

Original publication

DOI

10.1042/BST0350760

Type

Journal article

Journal

Biochem Soc Trans

Publication Date

08/2007

Volume

35

Pages

760 - 763

Keywords

Animals, Biophysical Phenomena, Biophysics, Escherichia coli, Humans, Receptors, Neurotensin