A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella.
Blake DP., Oakes R., Smith AL.
Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines.