Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Structural prediction by artificial intelligence can be powerful new instruments to discover novel protein-protein interactions, but the community still grapples with the implementation, opportunities and limitations. Here, we discuss and re-analyse our in silico screen for novel pathogen-secreted inhibitors of immune hydrolases to illustrate the power and limitations of structural predictions. We discuss strategies of curating sequences, including controls, and reusing sequence alignments and highlight important limitations caused by different platforms, sequence depth and computing times. We hope these experiences will support similar interactomic screens by the research community.

Original publication

DOI

10.1111/tpj.16969

Type

Journal article

Journal

Plant J

Publication Date

17/08/2024

Keywords

AlphaFold Multimer, artificial intelligence, computing cluster, hydrolase, inhibitor, protein folding, small secreted protein