Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Absolute binding free energies play a crucial role in drug development, particularly as part of the lead discovery process. In recent work, we showed how in silico predictions directly could support drug development by ranking and recommending favorable ideas over unfavorable ones. Here, we demonstrate a Python workflow that enables the calculation of ABFEs with minimal manual input effort, such as the receptor PDB and ligand SDF files, and outputs a .tsv file containing the ranked ligands and their corresponding binding free energies. The implementation uses Snakemake to structure and control the execution of tasks, allowing for dynamic control of parameters and execution patterns. We provide an example of a benchmark system that demonstrates the effectiveness of the automated workflow.

Original publication

DOI

10.1021/acs.jcim.4c00343

Type

Journal article

Journal

J Chem Inf Model

Publication Date

01/07/2024