Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Calcium fluoride is the ultimate source of all fluorochemicals. Current synthetic approaches rely on the use of HF, generated from naturally occurring fluorspar and sulfuric acid. Methods for constructing E-F bonds directly from CaF2 have long been frustrated by its high lattice energy, low solubility and impaired fluoride ion nucleophilicity. Little fundamental understanding of the reactivity of Ca-F moieties is available to guide methodology development; well-defined molecular species containing Ca-F bonds are extremely rare, and existing examples are strongly aggregated and evidence no nucleophilic fluoride delivery. Here, by contrast, we show that by targeting anionic systems of the type [Ln(X)2CaF]-, monomeric calcium fluoride complexes containing single Ca-F bonds can be synthesized, including via routes involving fluoride abstraction from existing C-F bonds. Comparative structural and spectroscopic studies of mono- and dinuclear systems allow us to define structure-activity relationships for E-F bond formation from molecular calcium fluorides.

Original publication




Journal article


Nat Chem

Publication Date