Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Productive beating of eukaryotic flagella and cilia requires a strict regulation of axonemal dynein activation. Fundamental to any description of axonemal beating is an understanding of the significance of the central pair microtubules and the degree to which central pair rotation has a role. However, for the majority of organisms, it is unclear whether the central pair actually rotates. Using an extra-axonemal structure as a fixed reference, we analysed the orientation of the central pair in African trypanosomes and other kinetoplastid protozoa. A geometric correction allowed the superposition of data from many cross-sections, demonstrating that the axis of the central pair is invariant and that there is no central pair rotation in these organisms. Analysis of mutants depleted in particular flagellar and basal body proteins [gamma-tubulin, delta-tubulin, Parkin co-regulated gene product (PACRG) or the paraflagellar rod protein PFR2] allowed a dissection of the mechanisms for central pair constraint. This demonstrated that orientation is independent of flagellum attachment and beating, but is influenced by constraints along its length and is entirely dependent on correct positioning at the basal plate.

Original publication

DOI

10.1242/jcs.02969

Type

Journal article

Journal

J Cell Sci

Publication Date

15/06/2006

Volume

119

Pages

2405 - 2413

Keywords

Animals, Cell Line, Cilia, Flagella, Kinetoplastida, Microtubule-Associated Proteins, Microtubules, Mutation, Organelles, Protozoan Proteins, Rotation, Time Factors, Trypanosoma brucei brucei, Tubulin