Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The observation made by early naturalists that some organisms could tolerate extreme environmental condisions and "enjoy the advantage of real resurrection after death" [ Spallanzani , M. Opuscules de Physique Animale et Vegetale 1776 (translated from Italian by Senebier , J. Opuscules de Physique Animale et Vegetale 1787 , 2 , 203 - 285 )] stimulated research that still continues to this day. Cryptobiosis, the ability of an organism to tolerate adverse environments, such as dehydration and low temperatures, still represents an unsolved and fascinating problem. It has been shown that many sugars play an important role as bioprotectant agents, and among the best performers is the disaccharide trehalose. The current hypothesis links the efficiency of its protective role to strong modifications of the tetrahedral arrangement of water molecules in the sugar hydration shell, with trehalose forming many hydrogen bonds with the solvent. Here, we show, by means of state-of-the-art neutron diffraction experiments combined with EPSR simulations, that trehalose solvation induces very minor modifications of the water structure. Moreover, the number of water molecules hydrogen-bonded to the sugar is surprisingly small.

Original publication

DOI

10.1021/jp911940h

Type

Journal article

Journal

J Phys Chem B

Publication Date

15/04/2010

Volume

114

Pages

4904 - 4908

Keywords

Computer Simulation, Hydrogen Bonding, Models, Molecular, Molecular Structure, Trehalose, Water