Trans-hydrogen bond deuterium isotope effects of A:T base pairs in DNA.
Vakonakis I., LiWang AC.
The chemical shifts of (13)C2 of adenosine residues of DNA were observed to experience a through-space or trans-hydrogen bond isotope effect as a result of deuterium substitution at the imino hydrogen site of base-paired thymidine residues. NMR measurements of several self-complementary DNA duplexes at natural abundance (13)C in 50% H(2)O, 50% D(2)O solvent mixtures yielded an average trans-hydrogen bond isotope effect, (2h)Delta(13)C2, of -47 ppb. The data suggest that stronger hydrogen bonds have more negative (2h)Delta(13)C2 values, which means that A:T N1.H3 hydrogen bonds increase the anharmonicity of the effective vibrational potential of H3. However, (2h)Delta(13)C2 values do not correlate with intra-residue (2)Delta(13)C4 values of thymidine observed here and earlier (Vakonakis et al., 2003), which suggests that (2h)Delta(13)C2 is not determined entirely by hydrogen bond strength. Instead, the variations observed in (2h)Delta(13)C2 values suggest that they may also be sensitive to base pair geometry.