Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human nuclei contain three different RNA polymerases: polymerases I, II, and III. Each polymerase is a multi-subunit enzyme with 12-17 subunits. The localization of these subunits is limited by the paucity of antibodies suitable for immunofluorescence. We now describe eight different monoclonal antibodies that react specifically with RPB6 (also known as RPA20, RPB14.4, or RPC20), RPB8 (RPA18, RPB17, or RPC18), RPC32, or RPC39 and which are suitable for such studies. Each antibody detects one specific band in immunoblots of nuclear extracts; each also immunoprecipitates large complexes containing many other subunits. When used for immunofluorescence, antibodies against the subunits shared by all three polymerases (i.e., RPB6, RPB8) gave a few bright foci in nucleoli and nucleoplasm, as well as many fainter nucleoplasmic foci; all the bright foci were generally distinct from speckles containing Sm antigen. Antibodies against the two subunits found only in polymerase III (i.e., RPC32, RPC39) gave a few bright and many faint nucleoplasmic foci, but no nucleolar foci. Growth in two transcriptional inhibitors-5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole and actinomycin D-led to the redistribution of each subunit in a characteristic manner.

Original publication

DOI

10.1006/excr.1999.4739

Type

Journal article

Journal

Exp Cell Res

Publication Date

10/01/2000

Volume

254

Pages

163 - 172

Keywords

Animals, Antibodies, Monoclonal, Autoantigens, Dactinomycin, Dichlororibofuranosylbenzimidazole, Fluorescent Antibody Technique, Indirect, Humans, Mice, Nucleic Acid Synthesis Inhibitors, RNA Polymerase I, RNA Polymerase II, RNA Polymerase III, Ribonucleoproteins, Small Nuclear, snRNP Core Proteins