Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dynamic interactions between membrane and cytoskeleton components are crucial for T cell antigen recognition and subsequent cellular activation. We report here that the membrane-microfilament linker ezrin plays an important role in these processes. First, ezrin relocalizes to the contact area between T cells and stimulatory antigen-presenting cells (APCs), accumulating in F-actin-rich membrane protrusions at the periphery of the immunological synapse. Second, T cell receptor (TCR)-mediated intracellular signals are sufficient to induce ezrin relocalization, indicating that this protein is an effector of TCR signaling. Third, overexpression of the membrane binding domain of ezrin perturbs T cell receptor clustering in the T cell-APC contact area and inhibits the activation of nuclear factor for activated T cells (NF-AT).


Journal article



Publication Date





715 - 728


Cell Communication, Cytoskeletal Proteins, Humans, Immunity, Cellular, Jurkat Cells, Lymphocyte Activation, Phosphoproteins, Receptors, Antigen, T-Cell, Signal Transduction, T-Lymphocytes