Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We recently identified a novel phospholipase Cdelta isoform, PLC-deltasu, in sea urchin gametes, whose precise functional role during fertilization and early embryogenesis remains unknown. Here, we characterized the binding of the PLC-deltasu PH domain to different phosphatidylinositol (PI) phospholipids and studied changes in its localization during fertilization. The PLC-deltasu PH domain bound most strongly to PI(3,4)P(2) and PI(3,5)P(2) phospholipids, in contrast to the PLCdelta1 PH domain which bound predominantly to PI(4,5)P(2). A green fluorescent protein tagged PLC-deltasu PH domain localized to the plasma membrane and its localization increased at fertilization and following addition of a Ca(2+) ionophore. However, recombinant PLC-deltasu failed to cause Ca(2+) signals like those seen at fertilization, in mouse and sea urchin eggs. Our findings suggest that PLC-deltasu is unlikely to be directly involved in the process of egg activation but may play a role in mediating extracellular signals transmitted via the PI 3'-kinase pathway.

Original publication




Journal article


Biochem Biophys Res Commun

Publication Date





964 - 970


Animals, Cells, Cultured, Embryonic Development, Fertilization, Isoenzymes, Mice, Phospholipase C delta, Phospholipids, Protein Binding, Sea Urchins, Type C Phospholipases, Zygote