Endolysosomal calcium regulation and disease.
Lloyd-Evans E., Waller-Evans H., Peterneva K., Platt FM.
Until recently, the mechanisms that regulate endolysosomal calcium homoeostasis were poorly understood. The discovery of the molecular target of NAADP (nicotinic acid-adenine dinucleotide phosphate) as the two-pore channels resident in the endolysosomal system has highlighted this compartment as an important calcium store. The recent findings that dysfunctional NAADP release leads to defective endocytic function which in turn results in secondary lipid accumulation in the lysosomal storage disease Niemann-Pick type C, is the first evidence of a direct connection between a human disease and defective lysosomal calcium release. In the present review, we provide a summary of the current knowledge on mechanisms of calcium homoeostasis within the endolysosomal system and how these mechanisms may be affected in human metabolic disorders.