Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have identified novel nuclear transcripts in the human beta-globin locus using nuclear run-on analysis in erythroid cell lines and in situ hybridization analysis of erythroid tissue. These transcripts extend across the LCR and intergenic regions but are undetectable in nonerythroid cells. Surprisingly, transient transfection of a beta-globin gene (epsilon, gamma, or beta) induces transcription of the LCR and intergenic regions from the chromosomal beta-globin locus in nonerythroid cell lines. The beta-globin genes themselves, however, remain transcriptionally silent. Induction is dependent on transcription of the globin gene in the transfected plasmid but does not require protein expression. Using in situ hybridization analysis, we show that the plasmid colocalizes with the endogenous beta-globin locus providing insight into the mechanism of transinduction.


Journal article


Genes Dev

Publication Date





2494 - 2509


Animals, Cell Line, DNA Probes, DNA, Single-Stranded, Erythrocytes, Gene Expression Regulation, Globins, Humans, In Situ Hybridization, Fluorescence, Liver, Locus Control Region, Mice, Mice, Transgenic, Plasmids, Transcription, Genetic, Transfection, Tumor Cells, Cultured