Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor. For most strains of HIV, this coreceptor is CCR5. Here, we provide evidence that CD4 is specifically associated with CCR5 in the absence of gp120 or any other receptor-specific ligand. The amount of CD4 coimmunoprecipitated with CCR5 was significantly higher than that with the other major HIV coreceptor, CXCR4, and in contrast to CXCR4 the CD4-CCR5 coimmunoprecipitation was not significantly increased by gp120. The CD4-CCR5 interaction probably takes place via the second extracellular loop of CCR5 and the first two domains of CD4. It can be inhibited by CCR5- and CD4-specific antibodies that interfere with HIV-1 infection, indicating a possible role in virus entry. These findings suggest a possible pathway of HIV-1 evolution and development of immunopathogenicity, a potential new target for antiretroviral drugs and a tool for development of vaccines based on Env-CD4-CCR5 complexes. The constitutive association of a seven-transmembrane-domain G protein-coupled receptor with another receptor also indicates new possibilities for cross-talk between cell surface receptors.

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

22/06/1999

Volume

96

Pages

7496 - 7501

Keywords

3T3 Cells, Acquired Immunodeficiency Syndrome, Animals, CD4 Antigens, CD4-Positive T-Lymphocytes, Cells, Cultured, HIV Envelope Protein gp120, HIV-1, Humans, Mice, Receptors, CCR5, Signal Transduction, Virus Replication