Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Associations between datasets can be discovered through multivariate methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and generalizability of CCA/PLS associations is stability of their feature patterns. However, stability of CCA/PLS in high-dimensional datasets is questionable, as found in empirical characterizations. To study these issues systematically, we developed a generative modeling framework to simulate synthetic datasets. We found that when sample size is relatively small, but comparable to typical studies, CCA/PLS associations are highly unstable and inaccurate; both in their magnitude and importantly in the feature pattern underlying the association. We confirmed these trends across two neuroimaging modalities and in independent datasets with n ≈ 1000 and n = 20,000, and found that only the latter comprised sufficient observations for stable mappings between imaging-derived and behavioral features. We further developed a power calculator to provide sample sizes required for stability and reliability of multivariate analyses. Collectively, we characterize how to limit detrimental effects of overfitting on CCA/PLS stability, and provide recommendations for future studies.

Original publication

DOI

10.1038/s42003-024-05869-4

Type

Journal article

Journal

Commun Biol

Publication Date

21/02/2024

Volume

7

Keywords

Least-Squares Analysis, Canonical Correlation Analysis, Algorithms, Reproducibility of Results, Brain