Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mice carrying human immunoglobulin transloci were immunised with HIV-1 gp140 antigen to gain insight into the range and nature of human monoclonal antibodies (mAbs) that can be elicited from such humanised mice. Using five-feature mice that harbour YAC-based germline-configuration human IgM, Igκ and Igλ transloci in a mouse background disrupted for endogenous mouse IgH and Igκ expression, gp140-specific human IgM mAbs were readily elicited following serial immunisation. These mAbs were converted to human IgG1 format and were found to bind diverse epitopes within gp140, exhibiting high functional affinity for the antigen-typically in the nanomolar or sub-nanomolar range. The number of specific, stable hybridomas per mouse was, however, low (typically around five) with the hybridomas within individual mice often being clonally related. Nevertheless, different mice used B cell clones expressing varied V(D)J combinations, with affinity maturation through somatic hypermutation making a critical contribution. Thus, a wide range of distinct high-affinity mAbs can be obtained by immunising multiple animals. The results confirm the utility of the translocus-mouse approach and give insight into strategies for possible future improvement.

Original publication

DOI

10.1093/protein/gzr038

Type

Journal article

Journal

Protein Eng Des Sel

Publication Date

10/2011

Volume

24

Pages

791 - 799

Keywords

Acquired Immunodeficiency Syndrome, Animals, Antibodies, Monoclonal, B-Lymphocyte Subsets, Chromosomes, Artificial, Yeast, Genes, Immunoglobulin, Humans, Hybridomas, Immunoglobulin M, Immunoglobulin Variable Region, Mice, Mice, Transgenic, Translocation, Genetic, env Gene Products, Human Immunodeficiency Virus