Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Electrical heterogeneities play a role in the initiation of cardiac arrhythmias. In certain pathological conditions such as ischaemia, current sinks can develop in the diseased cardiac tissue. In this study, we investigate the effects of changing the amount of heterogeneity and intercellular coupling on wavefront stability in a cardiac cell culture system and a mathematical model of excitable media. In both systems, we observe three types of behaviour: plane wave propagation without breakup, plane wave breakup into spiral waves and plane wave block. In the theoretical model, we observe a linear decrease in propagation velocity as the number of heterogeneities is increased, followed by a rapid, nonlinear decrease to zero. The linear decrease results from the heterogeneities acting independently on the wavefront. A general scaling argument that considers the degree of system heterogeneity and the properties of the excitable medium is used to derive a dimensionless parameter that describes the interaction of the wavefront with the heterogeneities.

Original publication




Journal article


Philos Trans A Math Phys Eng Sci

Publication Date





1299 - 1311


Action Potentials, Animals, Anisotropy, Cell Communication, Computer Simulation, Heart Conduction System, Humans, Models, Cardiovascular, Models, Neurological, Myocytes, Cardiac