Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The value of CD4 and CD8 monoclonal antibody therapy in tolerance induction has been demonstrated in rodent transplant models. In this paper the immunosuppressive potential of CD4 and CD8 monoclonal antibodies for dog renal allografts was evaluated as a preliminary to tolerogenic studies in this large animal model. Monoclonal antibodies were given for a maximum of 10 days after transplantation. Therapy was stopped prematurely following adverse reactions associated with the recipient developing an antibody response against the foreign (rat) therapeutic monoclonal antibody. Blood trough levels of CD4 and CD8 antibodies indicated that saturating doses were achieved. Although neither CD4 nor CD8 alone prolonged allograft survival (rejection by day 7), combination of CD4 and CD8 antibodies resulted in good graft function for a median of 14 days. The effect of removing circulating T lymphocytes was also assessed using a lytic Thy-1 monoclonal antibody. Alone Thy-1 had little effect but, when combined with CD4, the median allograft survival time was increased to 15.5 days. Reduction of the number of circulating T lymphocytes appears complementary to blockade of CD4 for immunosuppression, while blockade of CD4 combined with removal of CD8 also favours allograft survival.

Type

Journal article

Journal

Br J Surg

Publication Date

11/1993

Volume

80

Pages

1389 - 1392

Keywords

Animals, Antibodies, Monoclonal, CD4 Antigens, CD8 Antigens, Dogs, Female, Graft Survival, Immune Tolerance, Kidney Transplantation, Leukocyte Count, Male, T-Lymphocytes, Time Factors, Transplantation, Homologous