Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS: Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS: Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS: Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.

Original publication




Journal article


J Neurol Neurosurg Psychiatry

Publication Date