Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homologous chromosomes can pair in somatic and germ line cells, and many mechanisms have been proposed to explain how they do so. One popular class of models involves base-pairing between DNA strands catalyzed by recombination proteins, but pairing still occurs in mutants lacking the relevant functional proteins. We discuss an alternative based on two observations: transcription occurs in factories that specialize in transcribing specific gene sub-sets, and chromosomes only pair when transcribed. Each chromosome in the haploid set has a unique array of transcription units strung along its length; we suggest each is organized into clouds of loops tethered to specialized factories. Only homologs share similar strings of clouds and factories. Pairing begins when a promoter on one chromosome initiates in the homologous and specialized factory organized mainly by its homologous partner. This transiently ties the two homologs together, to increase the chances that adjacent promoters initiate in their homologous factories and that the two homologs will be zipped together. Then, interactions between promoters and RNA polymerases in the factories mediate pairing.

Original publication




Journal article


Biochim Biophys Acta

Publication Date





2155 - 2160


Animals, Chromosome Pairing, Chromosomes, Genome, Hydrogen Bonding, Macromolecular Substances, Models, Genetic, Transcription, Genetic