Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD). OBJECTIVES: Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS). METHODS: Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (β band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition. RESULTS: The left taVNS induced a reduction of the total β power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced β reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS. CONCLUSIONS: taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 International Parkinson and Movement Disorder Society.

Original publication

DOI

10.1002/mds.29690

Type

Journal article

Journal

Mov Disord

Publication Date

18/12/2023

Keywords

deep brain stimulation (DBS), freezing of gait, non-invasive vagus nerve stimulation (VNS), transauricular vagus stimulation, β band