Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human Ggamma-globin gene.
Plant KE., Dye MJ., Lafaille C., Proudfoot NJ.
The human gamma-globin genes form part of a 5-kb tandem duplication within the beta-globin gene cluster on chromosome 11. Despite a high degree of identity between the two genes, we show that while the upstream Ggamma-globin gene terminates transcription efficiently, termination in the Agamma gene is inefficient. This is primarily due to the different strengths of the polyA signals of the two genes; Ggamma-globin has a functionally stronger polyA signal than the Agamma gene. The probable cause of this difference in polyA efficiency characteristics lies with a number of base changes which reduce the G/U content of the GU/U-rich region of the Agamma polyA signal relative to that of Ggamma. The 3' flanking regions of the two gamma-globin genes have similar abilities to promote transcription termination. We found no evidence to suggest a cotranscriptional cleavage event, such as that seen in the human beta-globin gene, occurs in either gamma-globin 3' flank. Instead we find evidence that the 3' flank of the Ggamma-globin gene contains multiple weak pause elements which, combined with the strong polyA signal the gene possesses, are likely to cause gradual termination across the 3' flank.