Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. XFLRT3, a Nodal/TGFbeta target, regulates cell adhesion and modulates FGF signalling during Xenopus gastrulation. The present study describes the onset and pattern of FLRT1-3 expression in the early mouse embryo. FLRT3 expression is activated in the anterior visceral endoderm (AVE), and during gastrulation appears in anterior streak derivatives namely the node, notochord and the emerging definitive endoderm. To explore FLRT3 function we generated a null allele via gene targeting. Early Nodal activities required for anterior-posterior (A-P) patterning, primitive streak formation and left-right (L-R) axis determination were unperturbed. However, FLRT3 mutant embryos display defects in headfold fusion, definitive endoderm migration and a failure of the lateral edges of the ventral body wall to fuse, leading to cardia bifida. Surprisingly, the mutation has no effect on FGF signalling. Collectively these experiments demonstrate that FLRT3 plays a key role in controlling cell adhesion and tissue morphogenesis in the developing mouse embryo.

Original publication




Journal article


Dev Biol

Publication Date





184 - 193


Animals, Cell Adhesion, Cell Movement, Embryo, Mammalian, Endoderm, Fibroblast Growth Factors, Gene Expression Regulation, Developmental, Gene Targeting, Genes, Reporter, Genotype, Humans, In Situ Hybridization, Membrane Glycoproteins, Mice, Mice, Transgenic, Morphogenesis, Signal Transduction