Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although overconsumption of high-fat foods is a major driver of weight gain, the neural mechanisms that link the oral sensory properties of dietary fat to reward valuation and eating behavior remain unclear. Here we combine novel food-engineering approaches with functional neuroimaging to show that the human orbitofrontal cortex (OFC) translates oral sensations evoked by high-fat foods into subjective economic valuations that guide eating behavior. Male and female volunteers sampled and evaluated nutrient-controlled liquid foods that varied in fat and sugar ('milkshakes'). During oral food processing, OFC activity encoded a specific oral-sensory parameter that mediated the influence of the foods' fat content on reward value: the coefficient of sliding friction. Specifically, OFC responses to foods in the mouth reflected the smooth, oily texture (i.e., mouthfeel) produced by fatty liquids on oral surfaces. Distinct activity patterns in OFC encoded the economic values associated with particular foods, which reflected the subjective integration of sliding friction with other food properties (sugar, fat, viscosity). Critically, neural sensitivity of OFC to oral texture predicted individuals' fat preferences in a naturalistic eating test: individuals whose OFC was more sensitive to fat-related oral texture consumed more fat during ad libitum eating. Our findings suggest that reward systems of the human brain sense dietary fat from oral sliding friction, a mechanical food parameter that likely governs our daily eating experiences by mediating interactions between foods and oral surfaces. These findings identify a specific role for the human OFC in evaluating oral food textures to mediate preference for high-fat foods.Significance StatementFat and sugar enhance the reward value of food by imparting a sweet taste and rich mouthfeel but also contribute to overeating and obesity. Here we used a novel food-engineering approach to realistically quantify the physical-mechanical properties of high-fat liquid foods on oral surfaces and used functional neuroimaging while volunteers sampled these foods and placed monetary bids to consume them. We found that a specific area of the brain's reward system-the orbitofrontal cortex-detects the smooth texture of fatty foods in the mouth and links these sensory inputs to economic valuations that guide eating behavior. These findings can inform the design of low-calorie fat-replacement foods that mimic the impact of dietary fat on oral surfaces and neural reward systems.

Original publication




Journal article


J Neurosci

Publication Date