Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Quantification of membrane partition potential of drug compounds is of great pharmaceutical interest. Here, a novel approach combining liquid-state NMR diffusion measurements and fast-tumbling lipid/detergent bicelles is used to measure accurately the partition coefficient K(p) of amantadine in phospholipid bilayers. Amantadine is found to have a strong membrane partition potential, with K(p) of 27.6 in DMPC and 37.8 in POPC lipids. Electrostatic interaction also plays a major role in the drug's affinity towards biological membrane as introduction of negatively charged POPG dramatically increases its K(p). Saturation transfer difference experiments in small bicelles indicate that amantadine localizes near the negatively charged phosphate group and the hydrocarbon chain of bilayer lipid. The approach undertaken in this study is generally applicable for characterizing interactions between small molecules and phospholipid membranes.

Original publication

DOI

10.1016/j.bbrc.2004.09.039

Type

Journal article

Journal

Biochem Biophys Res Commun

Publication Date

05/11/2004

Volume

324

Pages

212 - 217

Keywords

Amantadine, Antiviral Agents, Lipid Bilayers, Membranes, Micelles, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Phospholipid Ethers, Phospholipids