Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Surviving and thriving in a complex world require intricate balancing of higher order brain functions with essential survival-related behaviours. Exactly how this is achieved is not fully understood but a large body of work has shown that different regions in the prefrontal cortex (PFC) play key roles for diverse cognitive and emotional tasks including emotion, control, response inhibition, mental set shifting and working memory. We hypothesised that the key regions are hierarchically organised and we developed a framework for discovering the driving brain regions at the top of the hierarchy, responsible for steering the brain dynamics of higher brain function. We fitted a time-dependent whole-brain model to the neuroimaging data from large-scale Human Connectome Project with over 1000 participants and computed the entropy production for rest and seven tasks (covering the main domains of cognition). This thermodynamics framework allowed us to identify the main common, unifying drivers steering the orchestration of brain dynamics during difficult tasks; located in key regions of the PFC (inferior frontal gyrus, lateral orbitofrontal cortex, rostral and caudal frontal cortex and rostral anterior cingulate cortex). Selectively lesioning these regions in the whole-brain model demonstrated their causal mechanistic importance. Overall, this shows the existence of a 'ring' of specific PFC regions ruling over the orchestration of higher brain function.

Original publication




Journal article


Prog Neurobiol

Publication Date





Brain dynamics, Coreperiphery, Neuroimaging, Thermodynamics, Whole-brain modelling