Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Scale invariance is a characteristic of neural activity. How this property emerges from neural interactions remains a fundamental question. Here, we studied the relation between scale-invariant brain dynamics and structural connectivity by analyzing human resting-state (rs-) fMRI signals, together with diffusion MRI (dMRI) connectivity and its approximation as an exponentially decaying function of the distance between brain regions. We analyzed the rs-fMRI dynamics using functional connectivity and a recently proposed phenomenological renormalization group (PRG) method that tracks the change of collective activity after successive coarse-graining at different scales. We found that brain dynamics display power-law correlations and power-law scaling as a function of PRG coarse-graining based on functional or structural connectivity. Moreover, we modeled the brain activity using a network of spins interacting through large-scale connectivity and presenting a phase transition between ordered and disordered phases. Within this simple model, we found that the observed scaling features were likely to emerge from critical dynamics and connections exponentially decaying with distance. In conclusion, our study tests the PRG method using large-scale brain activity and theoretical models and suggests that scaling of rs-fMRI activity relates to criticality.

Original publication




Journal article


Commun Biol

Publication Date





Humans, Neural Pathways, Brain, Brain Mapping, Magnetic Resonance Imaging, Models, Neurological