Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human snRNA genes transcribed by RNA polymerase II (e.g. U1 and U2) have a characteristic TATA-less promoter containing an essential proximal sequence element. Formation of the 3' end of these non-polyadenylated RNAs requires a specialized 3' box element whose function is promoter specific. Here we show that truncation of the C-terminal domain (CTD) of RNA polymerase II and treatment of cells with CTD kinase inhibitors, including DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole), causes a dramatic reduction in proper 3' end formation of U2 transcripts. Activation of 3' box recognition by the phosphorylated CTD would be consistent with the role of phospho-CTD in mRNA processing. CTD kinase inhibitors, however, have little effect on initiation or elongation of transcription of the U2 genes, whereas elongation of transcription of the beta-actin gene is severely affected. This result highlights differences in transcription of snRNA and mRNA genes.

Original publication

DOI

10.1093/emboj/cdg077

Type

Journal article

Journal

EMBO J

Publication Date

17/02/2003

Volume

22

Pages

925 - 934

Keywords

DNA Polymerase II, Dichlororibofuranosylbenzimidazole, Enzyme Inhibitors, Gene Expression Regulation, Humans, Protein Kinases, RNA Processing, Post-Transcriptional, RNA, Small Nuclear