Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The purpose of this study was to establish a normal range for the arterial arrival time (AAT) in whole-brain pulsed arterial spin labeling (PASL) cerebral perfusion MRI. Healthy volunteers (N = 36, range: 20 to 35 years) provided informed consent to participate in this study. AAT was assessed in multiple brain regions, using three-dimensional gradient and spin echo (GRASE) pulsed arterial spin labeling at 3.0 T, and found to be 641 +/- 95, 804 +/- 91, 802 +/- 126, and 935 +/- 108 ms in the temporal, parietal, frontal, and occipital lobes, respectively. Mean gray matter AAT was found to be 694 +/- 89 ms for females (N = 15), which was significantly shorter than for men, 814 +/- 192 ms (N = 21; P < 0.0003), and significant after correcting for brain volume (P < 0.001). Significant AAT sex differences were also found using voxelwise permutation testing. An atlas of AAT values across the healthy brain is presented here and may be useful for future experiments that aim to quantify cerebral blood flow from ASL data, as well as for clinical comparisons where disease pathology may lead to altered AAT. Pulsed arterial spin labeling signals were simulated using an identical sampling scheme as the empiric study and revealed AAT can be estimated robustly when simulated arrival times are well beyond the normal range.

Original publication




Journal article


Magn Reson Med

Publication Date





641 - 647


Adult, Algorithms, Blood Flow Velocity, Brain, Cerebral Arteries, Cerebrovascular Circulation, Female, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Magnetic Resonance Angiography, Male, Reproducibility of Results, Sensitivity and Specificity, Spin Labels, Young Adult