Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception. METHODOLOGY/PRINCIPAL FINDINGS: Stimuli were horizontal, rotational and radial Glass patterns. Glass patterns without coherent structure were viewed during the baseline period to ensure neuronal responses reflected perception of structure and not changes in local image features. The spatial distribution of task-related changes in source power was mapped using Synthetic Aperture Magnetometry (SAM), and the time course of activity within areas of maximal power change was determined by calculating time-frequency plots using a Hilbert transform. For six out of eight observers, passive viewing of global structure was associated with a reduction in 10-20 Hz cortical oscillatory power within extrastriate occipital cortex. The location of greatest power change was the same for each pattern type, being close to or within visual area V3a. No peaks of activity were observed in area V1. Time-frequency analyses indicated that neural activity was least for horizontal patterns. CONCLUSIONS: We conclude: (i) visual area V3a is involved in the analysis of global form; (ii) the neural signature for perception of structure, as assessed using MEG, is a reduction in 10-20 Hz oscillatory power; (iii) different neural processes may underlie the perception of horizontal as opposed to radial or rotational structure; and (iv) area V1 is not strongly activated by global form in Glass patterns.

Original publication

DOI

10.1371/journal.pone.0013865

Type

Journal article

Journal

PLoS One

Publication Date

05/11/2010

Volume

5

Keywords

Adult, Brain Mapping, Cues, Female, Glass, Humans, Magnetoencephalography, Male, Middle Aged, Pattern Recognition, Visual, Photic Stimulation, Psychomotor Performance, Reaction Time, Task Performance and Analysis, Visual Cortex, Visual Pathways, Visual Perception