Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe a technique for fabricating micro- and nanostructures incorporating fluorescent defects in diamond with a positional accuracy better than hundreds of nanometers. Using confocal fluorescence microscopy and focused ion beam etching, we initially locate a suitable defect with respect to registration marks on the diamond surface then etch a structure using these coordinates. We demonstrate the technique by etching an 8 μm diameter hemisphere positioned with single negatively charged nitrogen-vacancy defect lies at its origin. Direct comparison of the fluorescence photon count rate before and after fabrication shows an eightfold increase due to the presence of the hemisphere. © 2011 American Institute of Physics.

Original publication

DOI

10.1063/1.3573870

Type

Journal article

Journal

Applied Physics Letters

Publication Date

28/03/2011

Volume

98